Mitochondrial Dynamics and Metabolic Homeostasis
Mitochondria play a central role in cellular metabolism and produce ATP from numerous fuel sources and participate in many biochemical pathways, such as amino acid metabolism, Fe-S cluster assembly and calcium handling. Mitochondria also exhibit interesting macroscopic behaviors, including fusion (joining of two organelles into one), fission (division), active transport along cytoskeletal elements and mitophagy (targeted destruction). Together, these behaviors are known as mitochondrial dynamics.
On the surface, mitochondrial behaviors are functionally independent from their biochemical roles and mediated by distinct proteins. However, recent data from our lab and others suggest metabolism influences mitochondrial behavior and vice versa. For instance, culture conditions that enhance the oxidative phosphorylation activity of mitochondria serve to increase fusion rates (Mishra et al., Cell Metabolism 2014) and increase mitophagy rates (Melser et al., Cell Metabolism 2013). Conversely, genetic ablation of mitochondrial fusion results in severe OXPHOS defects (Chen et al., JBC 2005).